NEW STANDARD ACADEMY

SEMRI KOTHI SUPER MARKET, RAEBARELI

CLASS 10 (Maths) DPP (Academy)14-05-2024

1. Number of real solution of $\left(X^{2} 7 x+11\right)^{x^{2}-11 x+30}=1$ is
a) 4
b) 5
c) 6
d) No solution
2. If ' r ' and ' s ' are the roots of equation $a x^{2}+b x+c=0$ is
a) $\frac{\mathrm{b} 2-4 \mathrm{ac}}{2 a}$
b) $b^{2}-4 a c$
c) $\frac{\mathrm{b} 2-4 \mathrm{ac}}{c^{2}}$
d) $\frac{\mathrm{b} 2-2 \mathrm{ac}}{c^{2}}$
3. If the sum of the two roots of the equation $\frac{1}{x+a}+\frac{1}{x+b}=\frac{1}{c}$ is zero, then the product of two roots is \qquad
a) 0
b) $\frac{a^{2}+b^{2}}{2}$
c) $\frac{a+b}{2}$
d) $-\frac{\left(a^{2}+b^{2}\right)}{2}$
4. A group of girls planned a picnic. The budget for food was rs. 2400. Due to illness, 10 girls could not go to picnic and cost of food for each girl increased by RS. 8 . How many girls had planned the picnic?
a) 60
b) 50
c) 65
d) 57
5. The number of root satisfying the equation $\sqrt{5-x}=\mathrm{x} \sqrt{5-x}$ is / are :
a) 1
b) 2
c) 3
d) 0
6. If 2 is a root of the equation $x^{2}+b x+12=0$ and the equation $x^{2}+b x+q-0$ has equal roots, then $\mathrm{q}=$
a) 8
b) -8
c) 16
d) -16
7. If α and β are the root of the quadration $\mathrm{x}^{2}-6 \mathrm{x}-2=0$ and if $\mathrm{a}_{\mathrm{n}}=\alpha^{n}-\beta^{n}$, then the value of $\frac{a_{10}-2 a_{8}}{2}$ is:
a) 6.0
b) 5.2
c) 5.0
d) 3.0
8. What will be the difference of the roots of quadratic equation $4 y^{2}-4 y+1=0$?
a) 0
b) 1
c) $-\frac{1}{2}$
d) 2
9. Graph drawn from the equation $y=x 2-3 x-4$ will be:
a) Circle
b) Parabola
c) Straight line
d) Hyperbola
10. If roots of the equation $\left(a^{2}+b^{2}\right) x^{2}-2(a c+b d) x+\left(c^{2}+d^{2}\right)=$ 0 are equal then $b c-a d=$
a) 1
b) 0
c) -1
d) 2

NEW STANDARD ACADEMY

SEMRI KOTHI SUPER MARKET, RAEBARELI

CLASS 11 (Maths) DPP (Academy)14-05-2024

1. If $x=\sec \theta-\tan \theta$ and $y=\operatorname{cosec} \theta+\cot \theta$, then prove that $x y+1=y-x$
2. Prove that $\frac{\sin x-\cos x+}{\sin x+\cos -1}=\sec x+\tan x$.
3. If $2 \cos x+\sin x=1$ then find the value of $7 \cos x+6 \sin x$.
4. If $\sin x+\sin ^{2} x+\operatorname{Sin}^{3} x=1$ then find the value of $\cos ^{6} x-4 \cos ^{4} x+8 \cos ^{2} x$.
5. Let $(-3,-4)$ be a point on the terminal side of θ. Find the sine cosine and tangent of θ
6. Evaluate each of the following trigonometric functions:
a) $\operatorname{Cos} \frac{4 \pi}{3}$
b) $\tan \left(-210^{\circ}\right)$
c) $\operatorname{cosec} \frac{11 \pi}{4}$
7. State if the given angles are coterminal .
i) $\quad-185^{\circ}, 535^{\circ}$
ii) $1000^{\circ} 270^{\circ}$
iii) $\frac{15 \pi}{4}-\frac{17 \pi}{4}$
8. If $\operatorname{cosec} \mathrm{A}+\cot \mathrm{A}=\frac{11}{2}$, than $\tan \mathrm{A}=$
a) $\frac{21}{22}$
b) $\frac{15}{16}$
c) $\frac{44}{117}$
d) $\frac{117}{43}$
9. If $\sin \theta=\frac{24}{25}$ and θ lies in the second quadrant, then $\sec \theta+\tan \theta=$
a) -3
b) -5
c) -7
d) -9
10. If $\sin (\alpha-\beta)=\frac{1}{2}$ and $\cos (\alpha+\beta)=\frac{1}{2}$, where α and β are positive acute angles ,then
a) $\alpha=45^{\circ}, \beta=15^{\circ}$
b) $\alpha=15^{\circ}, \beta=45^{\circ}$
c) $\alpha=60^{\circ}, \beta=15^{\circ}$
d) None of these
